General Description

The AAT1189 is a single output step-down (Buck) DC output regulator with an integrated high side MOSFET. The input range is 6 V to 24 V making it the ideal power IC solution for consumer communications equipment operating from a low cost AC/DC adapter with 12 V output.

The step-down regulator provides up to 2.5 A output current in a small package. 490 kHz fixed switching frequency allows small L/C filtering components.
Voltage mode control allows for optimum performance across the entire output voltage and load range.

The controller includes programmable over-current, integrated soft-start and over-temperature protection.

The AAT1189 is available in the Pb -free, low profile $16-$ pin TDFN34 package. The rated operating temperature range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Features

- $\mathrm{V}_{\text {IN }}=6.0$ to 24.0 V
- $\mathrm{V}_{\text {out }}$ Adjustable from 1.5 V to 5.5 V
- I out up to 2.5 A
- Small Solution Size
- Low-Cost Non-Synchronous Solution
- Shutdown Current <35 $\mu \mathrm{A}$
- High Switching Frequency
- Voltage Mode Control
- PWM Fixed Frequency for Lowest Noise
- Programmable Over-Current Protection
- Over-Temperature Protection
- Internal Soft Start
- Low Profile $3 \times 4 m m$ TDFN-16 Packages
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Temperature Range

Applications

- DSL and Cable Modems
- Notebook Computers
- Satellite Set Top Box
- Wireless LAN Systems

Typical Application

Pin Descriptions

Pin \#	Symbol	Function
$1,2,3,4,5$, 15,16	LX	Step-down converter switching pin. Connect output inductor to this pin. Connect LX pins together.
6	BST	Boost drive input pin. Connect the cathode of fast rectifier from this pin and connect a 100nF ca- pacitor from this pin to the switching node (LX) for internal hi-side MOSFET gate drive.
7	EN	Enable input pin. Active high.
8	RS	Output current sense pin. Connect a small signal resistor from this pin to switching node (LX) to en- able over-current sense for step-down converter.
9	OS	Output voltage sense pin. Connect to the output capacitor to enable over-current sense for step- down converter.
10	COMP	Compensation pin for step-down regulator. Connect a series resistor, capacitor network to compen- sate the voltage mode control loop.
11	FB	Feedback input pin for step-down converter. Connect an external resistor divider to this pin to pro- gram the output voltage to the desired value.
12	GND	Ground pin for step-down converter. Connect input and output capacitors return terminals close to this pin for best noise performance.
13	VL	Internal linear regulator. Connect a 2.2 FF/6.3V capacitor from this pin to GND pin. 14
EP	IN	Input supply voltage pin for step-down regulator. Connect both IN pins together. Connect the input capacitor close to this pin for best noise performance.
Exposed paddle connected internally to IN. Connect to PCB heatsink to ensure maximum thermal dissipation.		

Pin Configuration

TDFN34-16
(Top View)

Absolute Maximum Ratings ${ }^{1}$

Symbol	Description	Value	Units
$\mathrm{V}_{\text {IN(HI) }}$	IN, LX to GND	-0.3 to 30.0	V
$\mathrm{~V}_{\text {IN(LO) }}$	VL to GND	-0.3 to 6.0	V
$\mathrm{~V}_{\text {BST1-LX }}$	BST to LX	-0.3 to 6.0	V
$\mathrm{~V}_{\text {CoNTROL }}$	FB, COMP, OS, RS to GND	-0.3 to $\mathrm{V}_{\text {IN(LO) }}+0.3$	V
$\mathrm{~V}_{\text {EN }}$	EN to GND	-0.3 to 6.0	V
$\mathrm{I}_{\text {IN(PULSED })}$	IN to LX	12.0	A
$\mathrm{~T}_{J}$	Operating Junction Temperature Range	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {LEAD }}$	Maximum Soldering Temperature (at leads, 10 sec$)$	300	${ }^{\circ} \mathrm{C}$

Thermal Information

Symbol	Description	Value	Units
Θ_{JA}	Thermal Resistance ${ }^{2}$	50	C / W
P_{D}	Maximum Power Dissipation 3	2.0	W

[^0]
Electrical Characteristics ${ }^{1}$

$V_{\text {IN }}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless noted otherwise. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Description	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}$	Input Voltage		6.0		24.0	V
$\mathrm{V}_{\text {uvio }}$	UVLO Threshold	$\mathrm{V}_{\text {IN }}$ Rising			5.0	V
		$\mathrm{V}_{\text {IN }}$ Hysteresis		300		mV
		$\mathrm{V}_{\text {IN }}$ Falling	3.0			V
$V_{\text {out }}$	Output Voltage Range		1.5		5.5	V
	Output Voltage Accuracy	$\mathrm{I}_{\text {Out }}=0 \mathrm{~A}$ to 2.5 A	-2.5		2.5	\%
$\mathrm{V}_{\text {FB }}$	Feedback Pin Voltage		0.591	0.600	0.609	V
$\begin{gathered} \Delta \mathrm{V}_{\text {LINEREG }} / \\ \Delta \mathrm{V}_{\text {IN }} \end{gathered}$	Line Regulation	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to 24 V , $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=2.5 \mathrm{~A}$		0.028		\%/V
		$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=2.5 \mathrm{~A}$		0.17		
$\begin{gathered} \Delta \mathrm{V}_{\text {LoADREG }} / \\ \Delta \mathrm{I}_{\text {IN }} \\ \hline \end{gathered}$	Load Regulation	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to 2.5 A		0.064		\%/A
		$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to 2.5 A		0.08		
I_{Q}	Quiescent Current	$\mathrm{V}_{\text {EN }}=$ High, No load		0.6		mA
$\mathrm{I}_{\text {SHDN }}$	Shutdown Current	$\mathrm{V}_{\text {EN }}=$ Low, $\mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}$			35.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OCP }}$	Over-Current Offset Voltage	$\mathrm{V}_{\text {EN }}=$ High, $\mathrm{V}_{\text {IN }}=6.0 \mathrm{~V}$ to $24.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100	120	mV
I_{LX}	LX Pin Leakage Current	$\mathrm{V}_{\mathrm{IN}}=24.0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=$ Low	-1.0		1.0	$\mu \mathrm{A}$
$\mathrm{D}_{\text {MAX }}$	Maximum Duty Cycle			85		\%
$\mathrm{T}_{\text {on(min) }}$	Minimum On-Time	$\mathrm{V}_{\mathrm{IN}}=6.0$ to 24.0 V		100		ns
$\mathrm{R}_{\text {Dson(H) }}$	Hi Side On-Resistance	$\mathrm{V}_{\mathrm{L}}=4.5 \mathrm{~V}$		70		$\mathrm{m} \Omega$
Fosc	Oscillator Frequency		350	490	650	kHz
$\mathrm{F}_{\text {Foldback }}$	Short Circuit Foldback Frequency	Current Limit Triggered		100		kHz
$\mathrm{T}_{\text {ss }}$	Soft-Start Time	From Enable to Output Regulation		2.5		ms
$\mathrm{T}_{\text {SD }}$	Over-Temperature Shutdown Threshold			135		${ }^{\circ} \mathrm{C}$
	Over-Temperature Shutdown Hysteresis			15		${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EN(L) }}$	Enable Threshold Low				0.6	V
$\mathrm{V}_{\text {EN(H) }}$	Enable Threshold High		2.5			V
I_{EN}	Input Low Current		-1.0		1.0	$\mu \mathrm{A}$

[^1]
Typical Characteristics

Step-Down Converter Efficiency vs. Load
($\mathrm{V}_{\text {out }}=3.3 \mathrm{~V} ; \mathrm{L}=4.7 \mu \mathrm{H}$)

Step-Down Converter DC Regulation
($\mathrm{V}_{\text {out }}=3.3 \mathrm{~V} ; \mathrm{L}=4.7 \mu \mathrm{H}$)

Step-Down Converter Line Regulation
$\left(\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V} ; \mathrm{L}=4.7 \mu \mathrm{H}\right.$)

Step-Down Converter Efficiency vs. Load ($\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$; L $=4.7 \mu \mathrm{H}$)

Step-Down Converter DC Regulation
$\left(\mathrm{V}_{\text {OUT }}=5 \mathrm{~V} ; \mathrm{L}=4.7 \mu \mathrm{H}\right)$

Step-Down Converter Line Regulation

($\mathrm{V}_{\text {out }}=5 \mathrm{~V} ; \mathrm{L}=4.7 \mu \mathrm{H}$)

Typical Characteristics

Step-Down Converter Output Ripple

$$
\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}\right)
$$

Step-Down Converter Output Ripple
$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}\right.$; $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$; $\left.\mathrm{I}_{\text {OUT }}=2.5 \mathrm{~A}\right)$

Time ($1 \mu \mathrm{~s} / \mathrm{div}$)

Step-Down Converter Load Transient Response
($\mathrm{I}_{\text {OUT }}=1.875 \mathrm{~A}$ to $2.5 \mathrm{~A} ; \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V} ; \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}$)

Time ($100 \mu \mathrm{~s} / \mathrm{div}$)

Step-Down Converter Output Ripple
$\left(V_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} ; \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}\right)$

Step-Down Converter Output Ripple
$\left(V_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}\right.$; $\left.\mathrm{I}_{\text {OUT }}=2.5 \mathrm{~A}\right)$

Time ($1 \mu \mathrm{~s} / \mathrm{div}$)

Step-Down Converter Load Transient Response
($\mathrm{I}_{\text {OUT }}=1.875 \mathrm{~A}$ to $2.5 \mathrm{~A} ; \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} ; \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}$)

Typical Characteristics

Step-Down Converter Load Transient Response ($\mathrm{I}_{\text {OUT }}=0.25 \mathrm{~A}$ to $2.5 \mathrm{~A} ; \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V} ; \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}$)

Time (100 $\mu \mathrm{s} / \mathrm{div}$)

Step-Down Converter Line Transient Response $\left(\mathrm{V}_{\text {IN }}=6 \mathrm{~V}\right.$ to $10 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$; $\left.\mathrm{I}_{\text {OUT }}=2.5 \mathrm{~A}\right)$

Time (100ms/div)

Step-Down Converter Load Transient Response ($\mathrm{I}_{\text {OUT }}=1.25 \mathrm{~A}$ to $2.5 \mathrm{~A} ; \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} ; \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}$)

Step-Down Converter Load Transient Response ($\mathrm{l}_{\text {OUT }}=0.25 \mathrm{~A}$ to $2.5 \mathrm{~A} ; \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$; $\mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}$)

Time ($100 \mu \mathrm{~s} / \mathrm{div}$)

Step-Down Converter Line Transient Response $\left(V_{\text {IN }}=6 \mathrm{~V}\right.$ to 10 V ; $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$; $\left.\mathrm{I}_{\text {OUT }}=2.5 \mathrm{~A}\right)$

Time (100ms/div)

Typical Characteristics

Step-Down Converter Soft Start
$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\mathrm{EN}}=10 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OUT}}=2.5 \mathrm{~A}\right)$

Time ($500 \mu \mathrm{~s} / \mathrm{div}$)

Step-Down Converter Switching Frequency
vs. Temperature
($\mathrm{V}_{\text {OUT }}=5 \mathrm{~V} ; \mathrm{L}=4.7 \mu \mathrm{H}$)

V_{IH} and V_{IL} vs. Input Voltage

Step-Down Converter Soft Start
$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\text {EN }}=10 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} ; \mathrm{I}_{\text {OUT }}=2.5 \mathrm{~A}\right)$

Time ($500 \mu \mathrm{~s} / \mathrm{div}$)

Step-Down Converter Switching Frequency
vs. Input Voltage
$\left(\mathrm{V}_{\text {IN }}=6 \mathrm{~V}\right.$ to $24 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$; $\left.\mathrm{I}_{\text {OUT }}=2.5 \mathrm{~A}\right)$

No Load Step-Down Converter Input Current vs. Input Voltage

Typical Characteristics

Step-Down Converter Output Voltage Error vs. Temperature $\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}\right)$

Step-Down Converter Output
Voltage Error vs. Temperature

Functional Block Diagram

Functional Description

The AAT1189 is a high voltage step-down (Buck) regulator with input voltage range from 6.0 V to 24.0 V , providing high output current in a small package. The output voltage is user-programmable from 1.5 V to approximately 85% of $\mathrm{V}_{\text {IN }}$ voltage. The device is optimized for low-cost 12 V adapter inputs.

The device utilizes voltage mode control configured for optimum performance across the entire output voltage and load range.

The controller includes integrated over-current, softstart and over-temperature protection. Over-current is
sensed through the output inductor DC winding resistance (DCR). An external resistor and capacitor network adjusts the current limit according to the DCR of the inductor and the desired output current limit. Frequency reduction limits the over-current stress during overload and short-circuit events. The operating frequency returns to the nominal setting when over-current conditions are removed.

The AAT1189 is available in the Pb-free 16-pin TDFN34 package with rated operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TDFN34-16's exposed paddle (EP) can be soldered to the PCB plane(s) for maximum thermal performance.

Applications Information

The high voltage DC/DC step-down converter provides an output voltage from 1.5 V to 5.5 V . The integrated high-side n-channel MOSFET device provides up to 2.5 A output current ${ }^{1}$. Input voltage range is 6.0 V to 24.0 V . The step-down converter utilizes constant frequency (PWM-mode) voltage mode control to achieve high operating efficiency while maintaining extremely low output noise across the operating range. High 490 kHz (nominal) switching frequency allows small external filtering components, achieving minimum cost and solution size. External compensation allows the designer to optimize the transient response while achieving stability across the operating range.

Output Voltage and Current

The output voltage is set using an external resistor divider as shown in Table 1. Minimum output voltage is 1.5 V and maximum output voltage is 5.5 V . Typical maximum duty cycle is 85%.

$\mathbf{V}_{\text {out }}(\mathbf{V})$	$\mathbf{R}_{\mathbf{5}}=\mathbf{6 . 0 4 k} \Omega$ $\mathbf{R}_{\mathbf{4}}(\mathbf{k} \Omega)$
1.5	9.09
1.8	12.1
1.85	12.4
2.0	14.0
2.5	19.1
3.0	24.3
3.3	27.4
5.0	44.2

Table 1: Feedback Resistor Values.
Alternatively, the feedback resistor may be calculated using the following equation:

$$
R_{4}=\frac{\left(V_{\text {OUT }}-0.6\right) \cdot R_{5}}{0.6}
$$

R_{4} is rounded to the nearest 1% resistor value.

Buck Regulator Output Capacitor Selection

Two $22 \mu \mathrm{~F}$ ceramic output capacitors are required to filter the inductor current ripple and supply the load transient current for $\mathrm{I}_{\text {out }}=2.5 \mathrm{~A}$. The 1206 package with 10 V minimum voltage rating is recommended for the output

High Voltage Step-Down Regulator
capacitors to maintain a minimum capacitance drop with DC bias.

Output Inductor Selection

The step-down converter utilizes constant frequency (PWM-mode) voltage mode control. A $4.7 \mu \mathrm{H}$ inductor value is selected to maintain the desired output current ripple and minimize the converter's response time to load transients. The peak switch current should not exceed the inductor saturation current, the MOSFET or the external Schottky rectifier peak current ratings.

Rectifier Selection

When the high-side switch is on, the input voltage will be applied to the cathode of the Schottky diode. The rectifier's rated reverse breakdown voltage must be chosen at least equal to the maximum input voltage of the stepdown regulator.
When the high-side switch is off, the current will flow from the power ground to the output through the Schottky diode and the inductor. The power dissipation of the Schottky diode during the time-off can be determined by the following equation:

$$
P_{D}=I_{\text {OUT }} \cdot V_{D} \cdot\left(1-\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right)
$$

Where V_{D} is the voltage drop across the Schottky diode.

Input Capacitor Selection

For low cost applications, a $100 \mu \mathrm{~F} / 25 \mathrm{~V}$ electrolytic capacitor is selected to control the voltage overshoot across the high side MOSFET. A small ceramic capacitor with voltage rating at least 1.05 times greater than the maximum input voltage is connected as close as possible to the input pin (Pin 14) for high frequency decoupling.

Feedback and Compensation Networks

The transfer function of the Error Amplifier is dominated by the DC Gain and the $\mathrm{L} \mathrm{C}_{\text {out }}$ output filter of the regulator. This output filter and its equivalent series resistor (ESR) create a double pole at F_{LC} and a zero at $\mathrm{F}_{\text {ESR }}$ in the following equations:

Eq. 1: $\mathrm{F}_{\mathrm{LC}}=\frac{1}{2 \cdot \pi \cdot \sqrt{\mathrm{~L} \cdot \mathrm{C}_{\mathrm{OUT}}}}$

[^2]Eq. 2: $F_{E S R}=\frac{1}{2 \cdot \pi \cdot E S R \cdot C_{O U T}}$
The feedback and compensation networks provide a closed loop transfer function with the highest OdB crossing frequency and adequate phase margin for system stability. Equations 3, 4, 5 and 6 relate the compensation network's poles and zeros to the components R2, R3, R4, C5, C6, and C7:

Eq. 3: $F_{z 1}=\frac{1}{2 \cdot \pi \cdot R_{2} \cdot C_{5}}$

High Voltage Step-Down Regulator

Eq. 4: $F_{z 2}=\frac{1}{2 \cdot \pi \cdot\left(R_{3}+R_{4}\right) \cdot C_{7}}$

Eq. 5: $\mathrm{F}_{\mathrm{P} 1}=\frac{1}{2 \cdot \pi \cdot \mathrm{R}_{2} \cdot\left(\frac{\mathrm{C}_{5} \cdot \mathrm{C}_{6}}{\mathrm{C}_{5}+\mathrm{C}_{6}}\right)}$
Eq. 6: $F_{P 2}=\frac{1}{2 \cdot \pi \cdot R_{3} \cdot C_{7}}$
Components of the feedback, feed forward, compensation, and current limit networks need to be adjusted to maintain system stability for different input and output voltage applications as shown in Table 2.

Figure 1: AAT1189 Feedback and Compensation Networks for Type III Voltage-Mode Control Loop.

Network	Components	$\mathbf{V}_{\text {OUT }}=3.3 \mathrm{~V}$	$\mathrm{V}_{\text {out }}=5.0 \mathrm{~V}$
Feedback	R4	$27.4 \mathrm{k} \Omega$	$44.2 \mathrm{k} \Omega$
	R5	$6.02 \mathrm{k} \Omega$	$6.02 \mathrm{k} \Omega$
Feed-forward	C7	330pF	330pF
	R3	499Ω	499Ω
Compensation	C5	470pF	220pF
	C6	56pF	56pF
	R2	$24.3 \mathrm{k} \Omega$	$24.3 \mathrm{k} \Omega$
Current Limit	C4	68 nF	68 nF
	R1	$6.34 \mathrm{k} \Omega$	$6.34 \mathrm{k} \Omega$
	R6	$6.34 \mathrm{k} \Omega$	$6.34 \mathrm{k} \Omega$
	R7	$453 \mathrm{k} \Omega$	$649 \mathrm{k} \Omega$
	R8	Open	Open

Table 2: AAT1189 Feedback and Compensation Network Components for $\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$ and $\mathrm{V}_{\text {out }}=5.0 \mathrm{~V}$.

Thermal Protection

The AAT1189 has an internal thermal protection circuit which will turn on when the device die temperature exceeds $135^{\circ} \mathrm{C}$. The internal thermal protection circuit will actively turn off the high side regulator output device to prevent the possibility of over temperature damage. The Buck regulator output will remain in a shutdown state until the internal die temperature falls back below the $135^{\circ} \mathrm{C}$ trip point. The combination and interaction between the short circuit and thermal protection systems allows the Buck regulator to withstand indefinite short-circuit conditions without sustaining permanent damage.

Thermal Calculations

There are two types of losses associated with the AAT1189 step-down converter: switching losses, conduction losses, and quiescent current losses. Conduction losses are associated with the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ characteristics of the power output switching devices. Switching losses are dominated by the gate charge of the power output switching devices. At full load, assuming continuous conduction mode (CCM), a simplified form of the synchronous step-down converter losses is given by:

$$
\begin{aligned}
\mathrm{P}_{\text {TOTAL }} & =\frac{\mathrm{I}_{\text {OUT }}{ }^{2} \cdot\left(\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) \mathrm{H}} \cdot \mathrm{~V}_{\text {OUT }}+\mathrm{R}_{\mathrm{DS}(\mathrm{ONLL}} \cdot\left[\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right]\right)}{\mathrm{V}_{\text {IN }}} \\
& +\left(\mathrm{t}_{\mathrm{SW}} \cdot \mathrm{~F}_{\mathrm{S}} \cdot \mathrm{I}_{\text {OUT }}+\mathrm{I}_{\mathrm{Q}}\right) \cdot \mathrm{V}_{\text {IN }}
\end{aligned}
$$

Figure 2: Resistor Network to Adjust the Current Limit Less than the Pre-Set Over-Current Threshold (Add R6, R7).
I_{Q} is the step-down converter and LDO quiescent currents respectively. The term $\mathrm{t}_{\text {sw }}$ is used to estimate the full load step-down converter switching losses.

For asynchronous Step-Down converter, the power dissipation is only in the internal high side MOSFET during the on time. When the switch is off, the power dissipates on the external Schottky diode. Total package losses for AAT1189 reduce to the following equation:

$$
P_{\text {TOTAL }}=I_{\text {OUT }}^{2} \cdot R_{\text {DS(ON)H }} \cdot D+\left(t_{S W} \cdot F_{S} \cdot I_{\text {OUT }}+I_{Q}\right) \cdot V_{I N}
$$

where $D=\frac{V_{\text {OUT }}}{V_{\text {IN }}}$ is the duty cycle.
Since $\mathrm{R}_{\mathrm{DS}(\mathrm{oN})}$, quiescent current, and switching losses all vary with input voltage, the total losses should be investigated over the complete input voltage range.

Given the total losses, the maximum junction temperature can be derived from the θ_{JA} for the TDFN34-16 package, which is $50^{\circ} \mathrm{C} / \mathrm{W}$.

$$
\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}=\mathrm{P}_{\mathrm{TOTAL}} \cdot \theta_{\mathrm{JA}}+\mathrm{T}_{\mathrm{AMB}}
$$

Figure 3: Resistor Network to Adjust the Current Limit Greater than the Pre-Set Over-Current Level (Add R6, R8).

SwitchReg ${ }^{\text {TM }}$

Over-Current Protection

The controller provides true-load DC output current sensing which protects the load and limits component stresses. The output current is sensed through the DC resistance in the output inductor (DCR). The controller reduces the operating frequency when an over-current condition is detected; limiting stresses and preventing inductor saturation. This allows the smallest possible inductor for a given output load. A small resistor divider may be necessary to adjust the over-current threshold and compensate for variation in inductor DCR.
The preset current limit threshold is triggered when the differential voltage from RS to OS exceeds 100 mV (nominal).

Layout Considerations

The suggested PCB layout for the AAT1189 is shown in Figures 5 and 6. The following guidelines should be used to help ensure a proper layout.

1. The power input capacitors (C 1 and C 12) should be connected as close as possible to high voltage input pin (IN) and power ground.

High Voltage Step-Down Regulator
2. C2, L1, D2, C8 and C9 should be placed as close as possible to minimize any parasitic inductance in the switched current path which generates a large voltage spike during the switching interval. The connection of inductor to switching node should be as short as possible.
3. The feedback trace or FB pin should be separated from any power trace and connected as close as possible to the load point. Sensing along a highcurrent load trace will degrade DC load regulation.
4. The resistance of the trace from the load returns to PGND should be kept to a minimum. This will help to minimize any error in DC regulation due to differences in the potential of the internal signal ground and the power ground.
5. Connect unused signal pins to ground to avoid unwanted noise coupling.
6. The critical small signal components include feedback components, and compensation components should be placed close to the FB and COMP pins. The feedback resistors should be located as close as possible to the FB pin with its ground tied directly to the signal ground plane which is separated from power ground plane.
7. C4 should be connected close to the RS and OS pins, while R1 should be connected close to the inductor.
8. For good thermal coupling, PCB vias are required from the exposed pad (EP) for the TDFN paddle to the bottom plane. The EP is internally connected to IN.

Figure 4: AAT1189I RN Evaluation Board Schematic.

Figure 5: AAT1189I RN Evaluation Board Top Layer.

Figure 6: AAT1189I RN Evaluation Board Bottom Layer.

AAT1189 Design Example

Specifications

$\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V} @ 2.5 \mathrm{~A}$, Pulsed Load $\Delta \mathrm{I}_{\text {LOAD }}=2.5 \mathrm{~A}$
$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$
$\mathrm{F}_{\mathrm{S}}=490 \mathrm{kHz}$
$\mathrm{T}_{\text {AMB }}=85^{\circ} \mathrm{C}$ in TDFN34-16 Package

Output Inductor

For Sumida inductor $\mathrm{RCH} 108 \mathrm{NP}-4 \mathrm{R} 7 \mathrm{M}, 4.7 \mu \mathrm{H}, \mathrm{DCR}=11.7 \mathrm{~m} \Omega$ max.
$\Delta \mathrm{I}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{L}_{1} \cdot \mathrm{~F}_{\mathrm{S}}} \cdot\left(1-\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)=\frac{5 \mathrm{~V}}{4.7 \mu \mathrm{H} \cdot 490 \mathrm{kHz}} \cdot\left(1-\frac{5 \mathrm{~V}}{12 \mathrm{~V}}\right)=1.2 \mathrm{~A}$
$\mathrm{I}_{\mathrm{PK}}=\mathrm{I}_{\mathrm{OUT}}+\frac{\Delta \mathrm{I}}{2}=2.5 \mathrm{~A}+0.6 \mathrm{~A}=3.1 \mathrm{~A}$
$P_{\mathrm{L} 1}=\mathrm{I}_{\mathrm{OUT}}{ }^{2} \cdot \mathrm{DCR}=3.1 \mathrm{~A}^{2} \cdot 11.7 \mathrm{~m} \Omega=112 \mathrm{~mW}$

Output Capacitor

$V_{\text {DROOP }}=0.33 \mathrm{~V}(10 \%$ Output Voltage $)$
$\mathrm{C}_{\text {OUT }}=\frac{3 \cdot \Delta \mathrm{I}_{\text {LOAD }}}{\mathrm{V}_{\text {DROOP }} \cdot \mathrm{F}_{\mathrm{S}}}=\frac{3 \cdot 2.5 \mathrm{~A}}{0.33 \mathrm{~V} \cdot 490 \mathrm{kHz}}=46.4 \mu \mathrm{~F}$; use $2 \times 22 \mu \mathrm{~F}$
$\mathrm{I}_{\text {RMS(MAX })}=\frac{1}{2 \cdot \sqrt{3}} \cdot \frac{\mathrm{~V}_{\text {OUT }} \cdot\left(\mathrm{V}_{\text {IN(MAX }}-\mathrm{V}_{\text {OUT } 1}\right)}{\mathrm{L} \cdot \mathrm{F}_{\mathrm{S}} \cdot \mathrm{V}_{\text {INI(MAX })}}=\frac{1}{2 \cdot \sqrt{3}} \cdot \frac{5.0 \mathrm{~V} \cdot(24 \mathrm{~V}-5.0 \mathrm{~V})}{4.7 \mu \mathrm{H} \cdot 490 \mathrm{kHz} \cdot 24 \mathrm{~V}}=496 \mathrm{~mA}_{\text {RMS }}$
$P_{R M S}=E S R \cdot I_{R M S}{ }^{2}=5 \mathrm{~m} \Omega \cdot(496 \mathrm{~mA})^{2}=1.2 \mathrm{~mW}$

Input Capacitor

Input Ripple $\mathrm{V}_{\mathrm{PP}}=25 \mathrm{mV}$

$$
\mathrm{C}_{\mathrm{IN}}=\frac{1}{\left(\frac{\mathrm{~V}_{\mathrm{PP}}}{\mathrm{I}_{\mathrm{OUT}}}-\mathrm{ESR}\right) \cdot 4 \cdot \mathrm{~F}_{\mathrm{S}}}=\frac{1}{\left(\frac{25 \mathrm{mV}}{2.5 \mathrm{~A}}-5 \mathrm{~m} \Omega\right) \cdot 4 \cdot 490 \mathrm{kHz}}=102 \mu \mathrm{~F}
$$

For low cost applications, a $100 \mu \mathrm{~F} / 25 \mathrm{~V}$ electrolytic capacitor in parallel with a $1 \mu \mathrm{~F} / 25 \mathrm{~V}$ ceramic capacitor is used to reduce the ESR.
$\mathrm{I}_{\text {RMS }}=\frac{\mathrm{I}_{\mathrm{OUT} 1}}{2}=1.25 \mathrm{~A}$
$P=E S R \cdot\left(I_{\text {RMS }}\right)^{2}=5 \mathrm{~m} \Omega \cdot(1.25 \mathrm{~A})^{2}=7.8 \mathrm{~mW}$

Current Limit

Over-Current Offset Voltage: $\mathrm{V}_{\text {OCP }}=100 \mathrm{mV}$
Total trace parasitic resistor and inductor DCR is $10 \mathrm{~m} \Omega$
$\mathrm{I}_{\text {LIMIT }}=5 \mathrm{~A}$
$I_{\text {PRESET }}=\frac{V_{\text {OCP }}}{D C R}=\frac{100 \mathrm{mV}}{10 \mathrm{~m} \Omega}=10 \mathrm{~A}>\mathrm{I}_{\text {LIMIT }}$
$\mathrm{R}_{7}=\frac{\mathrm{V}_{\text {OUT }} \cdot \mathrm{R}_{1}}{\mathrm{~V}_{\text {OCP }}-\mathrm{I}_{\text {LIMIT }} \cdot \mathrm{DCR}}=\frac{5 \mathrm{~V} \cdot 6.34 \mathrm{k} \Omega}{0.1 \mathrm{~V}-5 \mathrm{~A} \cdot 10 \mathrm{~m} \Omega}=634 \mathrm{k} \Omega$
$R_{6}=\frac{R_{1} \cdot R_{7}}{R_{7}-R_{1}}=\frac{6.34 k \Omega \cdot 634 k \Omega}{634 k \Omega-6.34 k \Omega}=6.40 \mathrm{k} \Omega$

AAT1189 Losses

All values assume an $85^{\circ} \mathrm{C}$ ambient temperature and thermal resistance of $50^{\circ} \mathrm{C} / \mathrm{W}$ in the TDFN34-16 package.
$P_{\text {TOTAL }}=I_{\text {OUT }}{ }^{2} \cdot R_{\text {DS(ON)H }} \cdot D+\left(t_{S W} \cdot F_{S} \cdot I_{\text {OUT }}+I_{Q}\right) \cdot V_{I N}$
$P_{\text {TOTAL }}=\frac{2.5 \mathrm{~A}^{2} \cdot 70 \mathrm{~m} \Omega \cdot 5 \mathrm{~V}}{12 \mathrm{~V}}+(5 \mathrm{~ns} \cdot 490 \mathrm{kHz} \cdot 2.5 \mathrm{~A}+70 \mu \mathrm{~A}) \cdot 12 \mathrm{~V}$
$\mathrm{P}_{\text {TOTAL }}=257 \mathrm{~mW}$
$T_{J(\text { MAX })}=T_{A M B}+\Theta_{J A} \cdot P_{\text {LOSS }}=85^{\circ} \mathrm{C}+\left(50^{\circ} \mathrm{C} / \mathrm{W}\right) \cdot 257 \mathrm{~mW}=98^{\circ} \mathrm{C}$

Ordering I nformation

Package	Voltage	Marking 1	Part Number (Tape and Reel) ${ }^{2}$
TDFN34-16	0.6	$3 R X Y Y$	AAT1189IRN-0.6-T1

All AnalogicTech products are offered in Pb-free packaging. The term "Pb-free" means semiconductor products that are in compliance with current RoHS standards, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at http://www.analogictech.com/aboutus/quality.php.

Package Information

TDFN34-16³

[^3][^4]© Advanced Analogic Technologies, Inc.

 brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.

[^0]: specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.
 2. Mounted on an FR4 board with exposed paddle connected to single layer PCB plane.
 3. Derate $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ambient temperature for TDFN34-16 package. Increased power dissipation is possible with additional PCB heatsinking

[^1]: tion with statistical process controls.

[^2]: 1. Output current capability may vary and is dependent on package selection, maximum ambient temperature, airflow and PCB heatsinking.
[^3]: All dimensions in millimeters.

[^4]: 1. $\mathrm{XYY}=$ assembly and date code.
 2. Sample stock is generally held on part numbers listed in BOLD.
 process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.
